

KAIRA RIOMETRY

Derek McKay-Bukowski

$$\begin{aligned} & PROPAGATION \\ & n^2 = 1 - \frac{X}{1 - iZ - [\frac{Y_{\perp}^2}{2(1 - X - iZ)}] \pm [\frac{Y_{\perp}^4}{4(1 - X - iZ)^2} + Y_{\parallel}^4]^{\frac{1}{2}}} \end{aligned}$$

Appleton-Hartree Equation

$$\begin{aligned} & PROPAGATION \\ & n^2 = 1 - \frac{X}{1 - iZ - [\frac{Y_{\perp}^2}{2(1 - X - iZ)}] \pm [\frac{Y_{\perp}^4}{4(1 - X - iZ)^2} + Y_{\parallel}^4]^{\frac{1}{2}}} \end{aligned}$$

 $X = \omega_{\rm N}^2 / \omega^2; \quad Y = \omega_{\rm B} / \omega; \quad Y_{\parallel} = \omega_{\rm B_{\parallel}} / \omega; \quad Y_{\perp} = \omega_{\rm B_{\perp}} / \omega; \quad Z = \nu / \omega;$

Plasma frequency

Collision frequency

PROPAGATION
$$n^{2} = 1 - \frac{X}{1 - iZ - \left[\frac{Y_{\perp}^{2}}{2(1 - X - iZ)}\right] \pm \left[\frac{Y_{\perp}^{4}}{4(1 - X - iZ)^{2}} + Y_{\parallel}^{4}\right]^{\frac{1}{2}}}$$
$$X = \omega_{N}^{2}/\omega^{2}; \quad Y = M_{N}/\omega; \quad Y_{\parallel} = \omega_{N}/\omega; \quad Y_{\perp} = M_{N}/\omega; \quad Z = \nu/\omega;$$
$$n^{2} = 1 - \frac{X}{1 - iZ} = 1 - \frac{\omega_{N}^{2}}{\omega(\omega - i\nu)}$$

$$n^2 = 1 - \frac{X}{1 - iZ} = 1 - \frac{\omega_{\rm N}^2}{\omega(\omega - i\nu)}$$

Complex
$$n = \mu - i\chi$$

Exp. decay
$$\exp(-x\chi\omega/c)\cos\omega(t-x\mu c)$$

$$n^{2} = 1 - \frac{X}{1 - iZ} = 1 - \frac{\omega_{N}^{2}}{\omega(\omega - i\nu)}$$
Complex
$$n = \mu - i\chi$$
Exp. decay
$$\exp(-x\chi\omega/c)\cos\omega(t - x\mu c)$$
Abs. coeff
$$\kappa = \frac{\omega}{c} \cdot \frac{1}{2\mu} \cdot \frac{XZ}{1 + Z^{2}} = \frac{e^{2}}{2\epsilon_{0}mc} \cdot \frac{1}{\mu} \cdot \frac{N_{e}\nu}{\omega^{2} + \nu^{2}}$$

Riometry Eqn. $A = 4.5 \times 10^{-5} \int \frac{N_e \nu}{\omega^2 + \nu^2} dx \text{ (dB)}$

CAUSES

- D-region, free electrons
- Collisional plasma, chemically complicated
- Multiple sources of ionisation
 - Lyα ionises NO
 - EUV ionises $O_2(\Delta g)$
 - Hard X-ray and EUV ionise O_2 and N_2
 - Galactic cosmic rays
 - Solar particle and auroral precipitation

KAIRA

Low-Band Antenna (LBA) array 34 m diameter 48 aerials 10-90 MHz

High-Band Antenna (HBA) array 51m x 31 m 48 tiles 110-270 MHz

RIOMETRY

Riometry Absorption Eqn.
$$A=4.5\times 10^{-5}\int \frac{N_{\rm e}\nu}{\omega^2+\nu^2}~dx~({\rm dB})$$

Observed Absorption

$$A = 10 \log_{10}(P_{\rm q}/P)$$

Giardino et al., A&A 387, 82-97 (2002).

However, this is already being done by the SGO riometer chain

MULTIBEAM

However, this is already being done by the IRIS multibeam riometer

38.1 MHz49 antennas7x7 matrix49 beams

LOFAR

More stable

Nicer beam shape

Steerable beams

Better, but not ground-breaking...

However, there are two innovations

1 MULTI-FREQUENCY

Riometry Eqn. $A = 4.5 \times 10^{-5} \int \frac{N_e \nu}{\omega^2 + \nu^2} dx \text{ (dB)}$

This is an inverse problem!

Kero, Vierinen, Virtanen et al. (2013)

MULTI-FREQUENCY

Riometry Eqn. $A = 4.5 \times 10^{-5} \int \frac{N_e \nu}{\omega^2 + \nu^2} dx$ (dB)

Kero, Vierinen, Virtanen et al. (2013)

2 INTERFEROMETRY

INTERFEROMETRY

Like riometry, but in 2D vCZ theorem

Build up QSP

Derive Abs.

Data July-October 2013 at 38.1 MHz

Shown here: 01-08 Oct 2013

+ ADVANTAGES

All-sky All-weather All-season

+ ADVANTAGES

All-weather All-season

- DISADVANTAGES

Resolution Single-frequency (at the moment)

Multi-frequency, interferometry

Multi-station (Finland, ILT)

Improved Inverse Problem algorithms

Improved ionospheric models

Applications (space, aviation, forecasting)

CONCLUSIONS

Inverse problem \rightarrow electron densities

All-sky inteferometric riometry

Viable for all-season auroral monitoring

Noise ↔ Data

Thank you!

http://kaira.sgo.fi @KairaProject kaira@sgo.fi